Chapter 2: Data

Core Questions

  • How do we collect diverse, high-quality robotics data at scale?
  • What annotation strategies work for multi-modal robotic datasets?
  • How do we ensure data quality and avoid distribution drift?

Topics

2.1 Data Collection Strategies

  • Teleoperation vs. autonomous collection
  • Multi-robot data aggregation
  • Simulation-to-real transfer
  • Sensor calibration and synchronization

2.2 Annotation and Labeling

  • Human-in-the-loop annotation
  • Foundation model-based auto-labeling
  • Quality assurance and validation
  • The cost-quality trade-off

2.3 Dataset Curation

  • Diversity metrics and coverage analysis
  • Handling edge cases and long-tail scenarios
  • Data augmentation for robotics
  • Privacy and safety considerations

2.4 Benchmark Datasets

  • Standard evaluation datasets
  • Domain-specific benchmarks
  • Transfer learning across datasets
  • The reproducibility crisis